Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение:
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а;2√5). Найдите значение а.
Нужно в уравнение подставить известные значения (координаты точки А):
2√5 = √а
(2√5)² = (√а)²
4*5 = а
а=20;
b) Если х∈[0;4], то какие значения будет принимать данная функция?
у=
√х
у=√0=0;
у=√4=2;
При х∈ [0;4] у∈ [0; 2].
с) y∈ [13;31]. Найдите значение аргумента.
13 = √х
(13)² = (√х)²
х=169;
31 = √х
(31)² = (√х)²
х=961;
х∈ [169; 961]
d) Найдите при каких х выполняется неравенство у≤3.
√х <= 3
(√х)² <= (3)²
х <= 9
Неравенство у≤3 выполняется при х [0, 9].