sin2x-cos+100= 10²=100
sin2x-cosx=0
2sinxcosx-cosx=0
cosx(2sinx-1)=0
cosx=0 2sinx-1=0
x=π/2+πK, K ∈ Z sinx= 1/2
x= (-1)n(степень)π/6+ πn, n∈ Z
1)K=0, x=π/2 n=0, x=π/6 ∉ [π/2; 3π/2]
2)K=1, x= 3π/2 3)n=1, x= 5π/6
ответ: 1), 2), 3)
y` = 4x^3 +6x
y` = 3x^2-6x+1
y`= 6x+2
y`= 4x+ 1/ cos^2 x
y` = 5x^4-10x + cosx
y`= e^x + 1/x
y`= 1- 1/x
y`= -sinx +cos x
y`= 1/ (2*корень из х) - 1/ (х^2)
y`= 1/ (x ln 7) + 3
y`= 1/ (x ln 3) + 1/ (x ln 5)
y`= 5+2=7
y`= [(2x+5)(2-8x)+8(x^2+5x)] / (2-8x)^2 = (-8x^2+4x+10) / (2-8x)^2
y`= 6x
y`=9x^2-6
y`= cosx(1+cosx) - sinx(1+sinx)= cosx+cos^2 x-sinx-sin^2 x= cosx - sinx+ cos2x
y`= 1/( cos^2 x) - 2cosx
y`= 12x^2
y`= 12x^2-8
y`= 1/x * (x^2-1)+2x*lnx=(x^2-1) / x + 2x*lnx
y`= 4^x * ln4 * log4x + 4^x / (x*ln4)
sin2x-cos+100= 10²=100
sin2x-cosx=0
2sinxcosx-cosx=0
cosx(2sinx-1)=0
cosx=0 2sinx-1=0
x=π/2+πK, K ∈ Z sinx= 1/2
x= (-1)n(степень)π/6+ πn, n∈ Z
1)K=0, x=π/2 n=0, x=π/6 ∉ [π/2; 3π/2]
2)K=1, x= 3π/2 3)n=1, x= 5π/6
ответ: 1), 2), 3)
y` = 4x^3 +6x
y` = 3x^2-6x+1
y`= 6x+2
y`= 4x+ 1/ cos^2 x
y` = 5x^4-10x + cosx
y`= e^x + 1/x
y`= 1- 1/x
y`= -sinx +cos x
y`= 1/ (2*корень из х) - 1/ (х^2)
y`= 1/ (x ln 7) + 3
y`= 1/ (x ln 3) + 1/ (x ln 5)
y`= 5+2=7
y`= [(2x+5)(2-8x)+8(x^2+5x)] / (2-8x)^2 = (-8x^2+4x+10) / (2-8x)^2
y`= 6x
y`=9x^2-6
y`= cosx(1+cosx) - sinx(1+sinx)= cosx+cos^2 x-sinx-sin^2 x= cosx - sinx+ cos2x
y`= 1/( cos^2 x) - 2cosx
y`= 12x^2
y`= 12x^2-8
y`= 1/x * (x^2-1)+2x*lnx=(x^2-1) / x + 2x*lnx
y`= 4^x * ln4 * log4x + 4^x / (x*ln4)