1
дана функция y=4−x. при каких значениях x значение функции равно 0?
x=
2
назови коэффициенты k и m линейной функции y=2,5x+5.
ответ:
k=
m=
3
график какой функции изображён на рисунке?
варианты ответов:
y=23x−3
y=−1,5x−3
y=−2x−3
y=−3x−2
4
найди координаты точки пересечения графика функции y=x−2 с осью y:
( ; .)
5
условие : 10 б.
если g(z)=z/4+10,
то g(-2) =
6
определи точку графика линейной функции y=4x−6, абсцисса которой равна ординате.
7
задай линейную функцию формулой, если известно, что её график проходит через начало координат и через точку a(12; -3,6).
график линейной функции задаётся формулой y=x
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
Всего 36 вариантов.
Отметим те варианты, в которых сумма выпавших чисел равна 9. Их четыре.
Следовательно, искомая вероятность Р(А)= 4/36 = 1/9
2) При бросании двух игральных кубиков могут выпасть следующие варианты:
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
Всего 36 вариантов.
Отметим те варианты, в которых сумма выпавших чисел меньше семи.
Их пятнадцать.
Следовательно, искомая вероятность Р(В)=15/36=5/12
Стоимость покупки соседки по парте:
6k + 15b = 4,8 руб. (т.к. 4 р. 80 коп. = 4 ⁸⁰/₁₀₀ р. = 4,8 р.)
Стоимость покупки лучшего друга:
5k + 12b = 3,9 руб. ( т.к. 3 р. 90 коп. = 3 ⁹⁰/₁₀₀ р. = 3,9 р.)
Система уравнений:
{6k + 15b = 4.8 |*5
{5k + 12b = 3.9 |* (-6)
{30k + 75b = 24
{-30k - 72b =- 23.4
Метод сложения:
(30k + 75b) + ( - 30k - 72b) = 24 + (-23.4)
(30k - 30k) + (75b - 72b) = 0.6
3b=0.6
b= 0.6 : 3
b = 0.2 (руб.) цена одной обложки
Подставим значение b=0.2 в I уравнение системы:
6k + 15*0.2 = 4,8
6k + 3 = 4.8
6k = 4.8 - 3
6k = 1.8
k= 1.8 : 6
k = 0.3 (р.) цена одного карандаша
2) 7 * 0,3 + 10 * 0,2 = 2,1 + 2 = 4,1 (р.) стоимость покупки семиклассника
3) 4 р. 40 коп. = 4,4 р.
4,4 - 4,1 = 0,3 = 30 (коп.) останется у семиклассника после совершения покупки
ответ: да, семикласснику хватит имеющихся денег на планируемую покупку.