1.что достаточно проверить чтобы убедится можно ли разложить на множители квадратный трёхчлен? 2.когда множители квадратного трёхчлена будут одинаковыми?
Каждый квадратный трехчлен ax 2 + bx+ c может быть разложен на множители первой степени следующим образом.
Решим квадратное уравнение: ax 2 + bx+ c = 0 . Если x1 и x2 - корни этого уравнения, то ax 2 + bx+ c = a ( x – x1 ) ( x – x2 ) . Это можно доказать, используя либо формулы корней неприведенного квадратного уравнения, либо теорему Виета.
( Проверьте это П р и м е р . Разложить трехчлен 2x 2 – 4x – 6 на множители первой степени. Р е ш е н и е . Во-первых, решим уравнение: 2x 2 – 4x – 6 = 0. Его корни:
x1 = –1 и x2 = 3. Отсюда, 2x 2 – 4x – 6 = 2 ( x + 1 ) ( x – 3 )
2)одинаковые,если Д=0
Решим квадратное уравнение:
ax 2 + bx+ c = 0 .
Если x1 и x2 - корни этого уравнения, то
ax 2 + bx+ c = a ( x – x1 ) ( x – x2 ) .
Это можно доказать, используя либо формулы корней неприведенного квадратного уравнения, либо теорему Виета.
( Проверьте это
П р и м е р . Разложить трехчлен 2x 2 – 4x – 6 на множители первой степени.
Р е ш е н и е . Во-первых, решим уравнение: 2x 2 – 4x – 6 = 0. Его корни:
x1 = –1 и x2 = 3. Отсюда, 2x 2 – 4x – 6 = 2 ( x + 1 ) ( x – 3 )