1)боковые стороны равнобедренной трапеции продолжены до пересечения в точке m. основания трапеции равны 2 см и 5 см, боковая сторона равна 6 см.найти расстояние от точки m до конца большего основании.
2)диагонали трапеции a b c d с основаниями a b и cd пересекаются в точке o.найти ab если известно, что ao=1,6, ac=4,4, dc=4,2.
3)на стороне cd параллелограмма abcd отмечена точка e.прямые ae и bc пересекаются в точке f.найти de если известно, что ec=18, ef=36, ae=52.
2428/35
Объяснение:
Сначало превращаем 63 34/35 в неправильную дробь. Что бы преобразовать необходимо целое тоесть 63 умножить на знаменатель- 35 и прибавить числитель- 34 , в числитель записываем число которое у нас получилось, а знаменатель остаётся тот же.63•35+34/35= 2239/35
2. потом преобразовываем 5,4 в смешанное число, получается 5 целых 4 десятых
5 4/10 сокращаем тоесть 4 делим на 2 и 10 тоже делим на 2
5 4/10=5 2/5 и преобразовываем в неправильную дробь
(5•5+2/5) 5 2/5= 27/5
приводим 2239/35 и 27/5 к общему знаменателю,а то есть находим Нок 5 и 35 . Нок это 35 , таким образом мы 2239/35 оставляем так же, а 27/5 и числитель и знаменатель умножаем на 7( умножаем на 7 потому что, чтобы получилось 35 надо 5 умножить именно на 7)(27•5 / 5•5) получается 2239/35+189/35 складываем только числители
2239/35+189/35=2428/35
Коротко:63 34/35+ 5,4 = 2239/35+5 4/10= 2239/35+5 2/5=
2239/35+27/5 = 2239/35+189/35= 2428/35
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.