1.:
а) sin(-2x)
б) ctg(7п+х)
в) cos(8п+3х)+1-tgп/4
2.вычислить:
sin 15п/2; cos(-п/3)*3tg(-п/4); ctg930°; cos 11п/6
3. выражения:
а) cosx-ctgx/sinx-1
б) sin(п-x) +sin x/2 /1-sin(3/2п-x)+cos x/2
в) sin⁴x-cos⁴x/sinxcosx
4.дано: sin a=8/17,п/2найти: cos(п/6-а)
5.сравните с 0 выражения :
sin4
cos1
8п
ctg9п/7
заметим, что
I t I² =t², ⇒ (4*x-7)^2= Ι (4*x-7) Ι² ⇒ пусть Ι (4*x-7) Ι=y ⇔
y²=y ⇔y(y-1)=0 ⇔ 1) y=0 2) y-1=0 ⇒ y=1 ⇒ Ι (4*x-7) Ι=1
1) y=0 ⇒ Ι (4*x-7) Ι=0 ⇒4*x-7=0 ⇒x=7/4
проверка x=7/4
(4*x-7)^2 = Ι (4*x-7) Ι (4*(7/4)-7)^2 = Ι (4*(7/4)-7) Ι 0=0 верно
2) Ι (4*x-7) Ι=1 ⇔
2.1) 4*x-7=1 ⇔ x=2
проверка x=2 (4*2-7)^2 = Ι (4*2-7) Ι 1=1 верно
2.2) 4*x-7=-1 ⇔ x=6/4 x=3/2
проверка x=3/2 (4*(3/2)-7)^2 = Ι (4*(3/2)-7) Ι 1=1 верно
ответ: x=7/4, x=2, x=3/2 .
2.
Ι (3x^2-3x-5) Ι=10 ⇔
1) (3x^2-3x-5) =10 2) (3x^2-3x-5) =-10
1) (3x^2-3x-15) =0 D=9+4·3·15=9(1+20)>0
x1=(3-3√21)/6 =(1-√21)/2 x2=(1+√21)/2
2) (3x^2-3x+5) =0 D=9-4·3·5=<0 нет решений
ответ:
x1=(1-√21)/2 x2=(1+√21)/2