1.91 даны три луча a,b,c с общим началом. известно, что угол(ab)=углу(ас)=углу(bc)=120 градусов. 1)проходит ли какой-нибудь из этих лучей между сторонами угла, образованного двумя лучами? 2) может ли прямая, не проходящая через начало данных лучей, пересекать все три данных луча?
1.92 (у кого этот учебник тот знает )
Объяснение:
Уравнение можно представить в виде
m*(x-x1)*(x-x2)=0
где x1 и x2 - корни уравнения, m - какая-то константа;
Раскрываем скобки
m*x^2-m*(x1+x2)x+m*x1*x2=0
Сравниваем коэффициенты в данном и этом уравнении;
перед x^2 стоит единица, следовательно m=1;
Тогда уравнение принимает вид:
x^2-(x1+x2)x+x1*x2=0
Далее, сравниваем остальные коэффициенты
-x1-x2=a-1
x1*x2=2a
и по условию задачи:
x1^2+x2^2=9
Последние 3 уравнения образуют систему, решаем ее. Получаем
{x1=-0.775049, x2 = 2.89815, a = -1.12311},
{x1 = 2.89815, x2 = -0.775049, a = -1.12311}
х²-5х +6 = х² -2х -3х+2*3 =x(x-2) -3 (x-2) = (x-3)(x-2)
2) Можно решить через дискриминант:
х² -5х+6=0
a= 1 , b= -5, с= 6
D= b² -4ac
D= (-5)² - 4*1*6= 25 - 24 = 1 ; √D= 1
D>0 - два корня уравнения
x1;х2 = (-b (+)(-) √D) / 2a
x1 = (5-1) /2 = 4/2 =2
x2= (5+1) /2 =6/2=3
аx² -bx +c = a(x-x1)(x-x2)
x²-5х+6 = 1(х-2)(х-3) =(х-2)(х-3)
1) x²+11x +24 = x²+8x+3x+ 3*8= x(x+8) +3(x+8) = (x+8)(x+3)
2)
х²+11х+24=0
D= 11²-4*1*24= 121-96= 25 ; √D= 5
x1= (-11 -5)/2 = -16/2= -8
x2 = (-11+5) /2 = -6/2 = -3
x²+11x+24= (x- (-8) ) (x-(-3) = (x+8)(x+3)